Адаптационный синдром

Адаптационный синдром – это совокупность адаптационных реакций человека и животных, возникающие на значительные по силе и продолжительности неблагоприятные воздействия – стрессоры.

Адаптационный синдром – это совокупность адаптационных реакций человека и животных, возникающие на значительные по силе и продолжительности неблагоприятные воздействия – стрессоры.

В развитии адаптационного синдрома выделяют три стадии:

Стадия тревоги : продолжается от нескольких часов до двух суток. Включает в себя две фазы – шок и противошок (на последней происходит мобилизация защитных реакций организма).

На стадии сопротивляемости устойчивость организма к различным воздействиям повышена. Вторая стадия приводит либо к стабилизации, либо сменяется последней стадией – истощением.

Стадия истощения : защитные реакции ослаблены, сам организм и психика утомлены.

У адаптационного синдрома есть и физиологические признаки: увеличение коры надпочечников, уменьшение вилочковой железы, селезенки и лимфатических узлов, нарушение обмена веществ с преобладанием процессов распада.

Описание общего адаптационного синдрома

Адаптационный синдром представляет собой комплекс адаптивных реакций у животных, в т. ч. и у человека, которые возникают в результате воздействия продолжительных, интенсивных неблагоприятных разного рода условий. Их называют стрессорами. Они могут быть внешними – изменения в окружающей среде (жара, дождь, зной, наводнение, ветер, холод) – и внутренними – эмоции, болевой шок.

Адаптационный синдром развивается под воздействием стрессоров

Последовательность стадий развития стресса такова:

  • тревожность;
  • адаптация;
  • истощение или полное приспособление к сложившимся обстоятельствам.

Психологические механизмы начинают работать сразу после того, как поступает сигнал о любых изменениях. За этап тревожности отвечает вегетативная система. Именно она приводит весь организм в боевую готовность, подавая сигнал эндокринной системе, которая, в свою очередь, активизирует выработку адреналина. Для осуществления любого действия человеку нужно затратить некоторое количество энергии. Поэтому при поступлении сигнала об опасности резко усиливается обмен веществ.

На стадии тревожности также резко увеличивается количество поступающего в кровь кислорода, за счёт чего улучшается работа ГМ. Всем этим занимается симпатический отдел головного мозга, на работу и реакции которого человек повлиять не в состоянии. На всё это уходит доля секунды. Период тревоги может продолжаться от нескольких часов до нескольких суток.

Следующий период – адаптация. Он длится дольше всего. Время, которое организму придётся затратить на адаптацию, будет прямо пропорционально интенсивности и длительности воздействия стрессора. Адаптация может закончиться полным истощением организма или же поможет приспособиться к сложившейся ситуации. Рассмотрим подробнее адаптационный синдром и его проявления.

Механизм общего адаптационного синдрома

Адаптационный синдром проявляется гипертрофией коры надпочечников и стойкой повышенной выработкой кортикостероидов. Эти гормоны улучшают ток крови, оказывают антигистаминный эффект, повышают АД. Все эти проявления связаны не только с самими их свойствами, но и с их способностью активизировать работу симпатического отдела головного мозга. Адаптационный синдром характеризуется снижением порога чувствительности. Лишь в отдельных случаях чувствительность повышается.

Во время снижения интенсивности воздействия стрессора на организм, работа всех систем приходит в норму. Когда стрессор воздействует на организм постоянно, происходит его гибель. Известен факт, что при перенапряжении может проявиться патологическая патофизиология определённой функции, которая станет началом цепочки последующих разрушений. К примеру, перенапряжение в коре ГМ приводит к предельному торможению и отмиранию его клеток, что само по себе уже становится причиной ухудшения работы организма в целом.

Анализ последствий, которые вызывает рассматриваемый синдром, привёл к выводам, что хоть адаптация и является защитной реакцией организма, но при определённых обстоятельствах она может вызвать неадекватную реакцию.

В ряде случаев физиология адаптации к стрессу играет злую шутку с организмом, выдавая реакцию сильнее, чем сам раздражитель. Отсюда пошла концепция болезней, связанных с эмоциональным стрессом.

Такую патологическую реакцию можно рассмотреть на следующем примере. Известным фактом является участие кортикоидов в защитных функциях организма при попадании в него аллергенов, вирусов и др. Высокий же уровень глюкокортикоидов при адаптационном стрессе угнетает клетки организма, что провоцирует возникновение воспалительных процессов и аллергических реакций. В такой среде попавшие внутрь микроорганизмы начинают очень быстро размножаться, начинается сепсис.

Три фазы общего адаптационного синдрома

Индивидуальные отличия

Стресс и адаптация у каждого человека будут проходить по-своему. Для кого-то повышение по службе и расширение обязанностей – предел мечтаний: к этому он и стремился. Для другого человека повышение смерти подобно: он не уверен в себе, боится брать на себя ответственность.

Стрессоустойчивость также находится на разном уровне. Восприимчивые натуры намного чаще терзаются навязчивыми мыслями и страдают от бессонницы, чем живущие одним моментом и не обращающие внимания на мелочи.

Привыкнуть к стрессовым ситуациям или полностью избегать их не получится, но каждый из нас может защитить себя от негативного воздействия постстрессового синдрома. Различают два вида стресса.

Рассматривая стресс, как защитную функцию организма, мы думаем, что он должен благотворно влиять на человеческий организм (эустресс), но во многих случаях происходит всё наоборот. Дело в том, что стресс имеет древние корни: если бы не способность к адаптации, человеческий организм вообще не смог бы выжить в условиях дикой природы. Но если раньше стрессовые реакции заставляли человека бежать, драться или работать не покладая рук, чтобы выжить, то сегодня мало кто находится на грани жизни и смерти, где необходима такая работа, а организм всё равно при каждой возможности начинает активировать адаптационные способности. Частая ненужная активация всех систем приводит к истощению организма. Такому виду стресса дали определение «дистресс».

Два варианта развития стресса

Сегодня доказано, что при стрессе обеспечивается усиленная работа всего организма, что вызывает ряд постстрессовых патологических состояний:

  • язвы ЖКТ и кишечника;
  • расстройства в работе сердечной системы;
  • снижение защитных функций;
  • нарушения в синтезе веществ;
  • изменения состава крови;
  • проблемы с психикой (депрессия, неврозы разной степени тяжести).

Доказана связь стресса с развитием онкологических заболеваний, атеросклерозом. Физиологические аспекты стресса могут быть спровоцированы и болевым синдромом. В критическом состоянии организм старается научиться жить с болью, т. е. снизить свою чувствительность к сильному внешнему раздражителю.

Особенности терапии

Расстройства при психосоматических заболеваниях нужно лечить комплексно. Исцеление направлено на психологическую адаптацию и устранение негативных последствий при помощи фармакологических средств. Способы психологического лечения включают в себя несколько разновидностей воздействий:

  • рациональная терапия;
  • поддерживающая терапия;
  • релаксационная терапия.

На сегодняшний день для купирования симптомов в любой фазе общего адаптационного синдрома применяются все существующие виды препаратов:

  • транквилизаторы;
  • седативные препараты;
  • антидепрессанты;
  • антипсихотики;
  • бромиды;
  • ноотропы.

Социальная адаптация

Социальная связь пациента с миром очень важна, поэтому наряду с лекарственными препаратами обязательно применяется адаптация индивидуума к социуму. В первую очередь, пациент должен осознать своё место и положение в обществе, научиться правильно себя подавать и общаться с людьми в любой ситуации.

Человек не должен отказываться от общения с людьми и замыкаться в себе. Нужно заложить в мозг программу по решению нестандартных задач, чтобы пациент имел возможность найти выход из нестандартной для него ситуации, например, обойти конфликт, найдя компромиссное решение или же перенеся разговор на более удобное время.

Для этого используются различные релаксационные методики, которые позволяют быстро расслабить тело и мозг.

Сначала релаксационные методики практикуют дома, а со временем человек может применять их даже в многолюдном помещении.

Все такие методики основаны на чётком самоконтроле, восстановлении дыхания, ведь при стрессе резко повышается АД, учащается сердцебиение, сбивается темп дыхания. После прохождения курса рекомендуется оценить адаптационный потенциал – навыки, приобретённые за время социальной адаптации.

Любые релаксационные методики и психологическая работа с пациентом требуют индивидуального подхода. Выбор метода работы будет зависеть от типа восприятия мира человеком, а также от его личной реакции на отдельные стрессовые ситуации.

Лекарственные препараты и травы

При необходимости назначают лекарственные препараты. Подбирать их следует в индивидуальном порядке, в зависимости от интенсивности проявления адаптационного синдрома или его последствий.

Не рекомендуется назначать транквилизаторы и ингибиторы сроком более, чем 1 месяц, потому как эти виды препаратов могут вызвать стойкую зависимость, и тогда никакое лечение не даст результата. Самыми действенными препаратами считаются седативные препараты на растительной основе: «Персен», «Валериана», «Седавит», «Фитосед» и др. Их можно заменить отварами трав. Среди лекарственных растений положительное действие на клетки нервной системы оказывают мята, мелисса, зверобой, боярышник.

В лечении стресса немалое значение имеет витаминотерапия. Витамины группы В участвуют в построении и регенерации нервных клеток.

Следует отдавать предпочтение свежим овощам и фруктам, обогащённым витаминами и грубой клетчаткой, т. е. не следует забывать о правильном питании.

«Седавит» — успокоительный растительный препарат

Стресс рассматривается как реакция индивидуальной адаптации организма к изменениям в окружающей среде или внутри организма. Адаптационный синдром очень часто требует медицинского вмешательства, потому как вызывает разлады в работе почти всех систем органов. Не стоит запускать свой организм: при обнаружении малейших сбоев, необходимо обращаться к специалистам и решать проблему на корню.

Адаптационный синдром механизм развития

Глава 3. ОБЩИЙ АДАПТАЦИОННЫЙ СИНДРОМ

Представление о стрессе (от англ. stress — напряжение) как об общем адаптационном синдроме (ОАС) впервые сформулировал видный канадский ученый Ганс Селье (1907-1982 г.г.).

Стресс – это особое состояние организма, возникающее в ответ на дей-ствие любых раздражителей, угрожающих гомеостазу, и характеризующееся мобилизацией неспецифических приспособительных реакций для обеспече-ния адаптации к действующему фактору.

В качестве стрессора, то есть агента, вызывающего стресс, могут вы-ступать любые внешние или внутренние раздражители, обычные или не обычные по своей природе, но предъявляющие к организму повышенные требования, реально нарушающие или потенциально угрожающие постоян-ству внутренней среды организма. Всякая неожиданность, которая нарушает привычное течение жизни, может быть причиной стресса. Это – психосоци-альные, производственные, бытовые трудности, которые надо преодолевать, инфекция, болевые факторы, тяжелая физическая нагрузка, высокая темпе-ратура или холод, голод, адинамия, гипоксия и даже неприятные воспомина-ния. Вот как сам Селье писал о причинах стресса: «Все приятное и неприят-ное, что ускоряет ритм жизни, может приводить к стрессу. Болезненный удар и страстный поцелуй в одинаковой мере могут быть его причиной».

Итак, с точки зрения стрессовой реакции не имеет значения харак¬тер требования, предъявляемого к организму, будь это неожиданная ра¬дость или конфликтная ситуация, угрожающая жизни или вызывающая отрицательное эмоциональное состояние, – страх, душевный дискомфорт и др. Для ста¬новления стрессовой реакции не имеет значения сила стрессорного воз¬действия. Решающим для возникновения стрессовой реакции является лишь то, предъявляет ли раздражитель дополнительные требования к организму, вызывает ли потребность к адаптации, включению новых приспособитель-ных механизмов. Однако выраженность стрессовой реакции будет, безуслов-но, зависеть от интенсивности, длительности, частоты воздействия стрессор-ного фактора. Кроме того, интенсивность стресс-реакции будет определяться адаптационным потенциалом самого организма, его приспособительных воз-можностей.

Смотрите так же:  Лечение гонореи азитромицином отзывы

Действие стрессорного раздражителя индуцирует развитие общего адап-тационного синдрома. ОАС — проявление стресса в его временном развитии, поэтому под ОАС следует понимать совокупность неспецифических при-способительных реакций, возникающих в ответ на действие стрессорного фактора и направленных на преодоление неблагоприятного влияния указан-ного агента на здоровье.

В развитии ОАС Г.Селье выделил три стадии.

Первая стадия ОАС – стадия тревоги (alarm reaction). Эта стадия ста-новления реакций адаптации. Реакция тревоги означает немедленную моби-лизацию защитных ресурсов организма и одновременное угнетение тех функций, которые для выживания организма в условиях действия стрессор-ного фактора имеют меньшее значение, в частности, роста, регенерации, пи-щеварения, репродуктивных фунций, лактации. Эта стадия характеризуется напряжением функций различных структур за счет мобилизации имеющихся резервов. Организм готовится к противодействию стрессорному фактору и, если эти резервы достаточны, то быстро развивается адаптация.

Что же является пусковым механизмом стресс-реакции?

Влияние любого стрессора передается непосредственно через экстеро-, интерорецепторы и афферентные нервные пути, либо гуморально в цен-тральные нервные структуры, управляющие адаптационной деятельностью организма. Эти структуры расположены в коре головного мозга, в ретику-лярной формации ствола мозга, в лимбической системе. В этих структурах осуществляется анализ нервных и гуморальных влияний, вызванных дейст-вием стрессора, происходит их эмоциональное окрашивание. Сформировав-шийся в вышеперечисленных структурах ответ передается различным орга-нам-мишеням, которые обеспечивают развитие специфических для данного стрессора изменений в организме, связанных с его качеством, а также не-специфических сдвигов, которые являются реакцией организма на предъяв-ленное к нему требование как таковое, независимо от его природы. По мне-нию Г.Селье, именно эти неспецифические изменения составляют сущность стресса и проявляются в виде общего адаптационного синдрома.

Решающую роль в формировании ОАС играет гипоталамус, активация которого наступает при действии любого стрессора. Гипоталамус – это орган центральной нервной системы, который, получив информацию о появлении стрессора, запускает работу всей стресс-системы, координирует эндокрин-ные, метаболические и поведенческие реакции организма на стрессоры. Ак-тивация передних и средних ядер гипоталамуса приводит к освобождению так называемых рилизинг-факторов, либеринов или как их сейчас чаще назы-вают, регулирующих гормонов, которые направляют функцию переднего ги-пофиза, его секрецию тропных гормонов. В частности при активации КРГ-нейронов паравентрикулярного ядра переднего гипоталамуса освобождается кортикотропин-рилизинг-гормон, стимулирующий синтез и секрецию адре-нокортикотропного гормона (АКТГ). Последний в свою очередь, стимулиру-ет повышенное выделение глюкокортикоидов (ГК) из пучковой зоны коры надпочечников — кортизола (гидрокортизона) и кортикостерона, наиболее ак-тивных и значимых для человека.

Активация заднего гипоталамуса приводит к повышению тонуса симпа-тико-адреналовой системы. При этом повышается тонус симпатической нервной системы, усиливается освобождение норадреналина из симпатиче-ских нервных окончаний, а из мозгового вещества надпочечников выделяет-ся в кровь адреналин, что приводит к значительному повышению уровня ка-техоламинов (КХ) в крови.

Таким образом, стрессовые стимулы вызывают, прежде всего, актива-цию гипоталамо-гипофизарно-надпочечниковой системы (ГГНС), избыточ-ную про¬дукцию адаптивных гормонов, с которых и начинается организация защиты от действия стрессорного фактора. Это такие вещества, как ГК, адре-налин, норадреналин (Г.Селье, 1960, 1979)

В формировании стресса принимают участие и другие гормоны и биоло-гически активные вещества. Сам Г.Селье признавал, что ГГНС, хотя и играет ведущую роль в развитии стресса, тем не менее не является единственной системой, отвечающей за все проявления стресс-реакции. Так, установлено, что активация переднего гипоталамуса под влиянием стрессорных факторов сопровождается усилением продукции аргинин-вазопрессина. Вазопрессин рассматривается как фактор, потенцирующий эффект кортиколиберина и способствующий высвобождению АКТГ, а также повышающий активность симпатиической нервной системы, что усиливает ее действие при стрессе ( Тигранян Р.А., 1988)

Активация гипоталамуса и симпатической нервной системы способ-ствует также усиленной секреции β-эндорфинов из промежуточной доли ги-пофиза и метэнкефалинов из надпочечников. (Тигранян Р.А., Вакулина О.П.,1984; Пшенникова М.Г.,1987). Согласно современным представлениям опиоидные пептиды принимают участие в регуляции активности нейронов структур ЦНС, формирующих реакции стресса, в частности, регулируют сек-рецию гипоталамических гормонов и гормонов аденогипофиза, являются мо-дуляторами активности коры надпочечников, угнетают процессы выделения и рецепции катехоламинов.

Вопрос об активации продукции тиреотропного гормона (ТТГ) гипофиза и функциональной актив¬ности щитовидной железы при стрессорных воздей-ствиях остается спорным. По мнению большинства авторов, функция щито-видной железы при стрессе ингибируется, что связывают с подавлением сек-реции ТТГ под влиянием высоких концентраций АКТГ (Лейкок Дж.Ф., Вайс П.Г., 2000). Другие, наоборот, находили усиление секреции ТТГ и повыше-ние функции щитовидной железы, особенно в экспериментах с воздействием низких температур (Горизонтов П.Д., 1981). Противоречивость данных о ро-ли тиреоидной эндокринной системы в становлении стресса, по-видимому, объясняется тем обстоятельством, что неспецифические эффекты стрессора при определенных обстоятельствах могут модифицироваться его специфиче-скими свойствами.

Определенная роль в становлении стресс-реакции принадлежит глюка-гону, секреция которого повышается под влиянием катехоламинов. В то же время избыток КХ тормозит продукцию другого гормона подже¬лудочной железы – инсулина. При стрессе закономерно отмечается повышение уровня паратгормона, благодаря которому происходят мобилизация из костей каль-ция и увеличение его уровня в крови и клетках, где он является универсаль-ным стимулятором внутриклеточных процессов.

В последние годы показано, что в стресс-реакцию вовлечен ряд био¬логически активных веществ, потенцирующих или опосредующих эффекты основных реализующих звеньев стресс-системы. Это такие вещества, как ан-гиотензин II, некоторые интерлейкины, нейропептид Y, субстанция Р. Меха-низмы действия вышеперечисленных веществ в реакциях адаптации пока ма-ло изучены.

Стадия тревоги возникает в момент действия стрессорного фактора, мо-жет продолжаться в течение 48 ч после начала воздействия стрессора. Ее выраженность зависит от силы и продолжительности действия раздра-жителя. Стадия тревоги подразделяется на две фазы: шока (потрясения) и контршока. В фазе шока возникает угроза всем жизненно важным функциям организма, при этом развиваются гипоксия, артериальная гипотензия, мы-шечная гипотония, гипотермия, гипогликемия, преобладают катаболические реакции в тканях над анаболиическими. В этой стадии повышается секреция катехоламинов, глюкокортикоидов, но с другой стороны, в еще большей сте-пени возрастает потребность тканей в ГК, так как резко повышается степень их утилизации тканями. Последнее приводит к относительной недостаточно-сти ГК, несмотря на их повышенную продукцию. В этот период сопротив-ляемость организма снижается, и если действия стрессора выходят за преде-лы компенсаторных возможностей организма, то может наступить смерть уже на этой стадии. Но если механизмы адаптации превалируют, то наступа-ет фаза контршока. Эта фаза обусловлена резкой гипертрофией пучковой зо-ны коры надпочечников, усилением секреции ГК и повышением их уровня в крови и тканях.

Если действие стрессора не очень сильное, то возможно развитие сразу фазы контршока без предварительной фазы шока. Фаза контршока пред-ставляет собой переходный этап к следующей стадии ОАС – стадии рези-стентности (stage of resistance).

Стадия резистентности характеризуется перестройкой защитных систем организма, адаптацией к действию стрессора. Резистентность организма под-нимается выше нормы и не только к агенту, явившемуся причиной стресса, но и к другим патогенным раздражителям. Это свидетельствует о неспеци-фичности стресс-реакции. В этой стадии устанавливаются новые межэндок-ринные взаимоотношения. Продолжается усиленная выработка адаптивных гормонов – катехоламинов, ГК, хотя уровень их секреции снижается по срав-нению с первой стадией. Катехоламины усиливают секрецию глюкагона и тормозят продукцию инсулина, в результате чего значительно снижается уровень инсулина в крови. Резко усиливается продукция соматотропного гормона, пролактина (Зайчик А.Ш., Чурилов А.П., 2001) К этому моменту развиваются и подключаются специфические гомеостатические реакции, ха-рактерные для данного стрессорного фактора.

В случае прекращения влияния стрессорного агента или ослабления его силы вызванные ими изменения в организме (гормональные, структурно-метаболические сдвиги) постепенно нормализуются. Сколько-нибудь выра-женных патологических последствий не наступает.

Когда же патогенный раздражитель имеет чрезмерную силу или дей-ствует длительно, многократно, то адаптационные возможности организма могут оказаться несостоятельными. Это вызовет потерю резистентности и развитие конечной стадии ОАС – стадию истощения (stagе of exhaustion). Речь идет в первую очередь об истощении пучковой зоны коры надпочечни-ков, ее прогресссирующей атрофии и уменьшении продукции ГК. Эта стадия характеризуется снижением активности симпато — адреналовой системы, уг-нетением всех защитных процессов в организме, малой сопротивляемостью организма к любым стрессорам. На этой стадии появляются изменения, свой-ственные стадии тревоги, но если на стадии тревоги эти изменения носят об-ратимый характер, то на стадии истощения они зачастую носят необратимый характер и нередко приводят организм к смерти. На этой стадии развивается уже абсолютная недостаточность ГК, обусловленная истощением пучковой зоны коры надпочечников. В этой стадии преобладают в организме минера-локортикоиды, которые во многих отношениях являются антагонистами ГК. Стадия истощения характеризует собой переход адаптивной стресс-реакции в патологию.

Каким же образом глюкокортикоиды повышают резистентность орга-низма, выполняя свою адаптивную роль при действии различных стрессор-ных факторов?

Основными механизмами срочной адаптации, обеспечиваемыми ГК, яв-ляются:

1. Мобилизация и направленное перераспределение энергетических ре-сурсов организма. ГК вместе с КХ осуществляют быстрое энергетическое обеспечение тканей, участвующих в адаптации к данному стрессору. Уро-вень энергозатрат организма при сильном стрессе может превысить основной обмен в 2 раза.

Энергетическое подкрепление адаптационных реакций осуществляется прежде всего за счет того, что ГК и КХ активируют глюконеогенез в печени (в 6-10 раз) – образование глюкозы из неуглеводистых продуктов — амино-кислот и жирных кислот. Мышечные белки и жирные кислоты становятся основными эндогенными источниками энергии. Таким образом, переводится пластический, строительный материал, каковым являются белки и жиры, в энергетический. ГК и КХ (особенно адреналин) также ослабляют влияние инсулина на поглощение глюкозы инсулинзависимыми органами и тканями, что способствует гипергликемии. КХ, активируя фосфорилазу, ускоряют процессы гликогенолиза и выделение глюкозы, особенно из печени, в сис-темный кровоток. В то же время ГК, в отличие от КХ, вызывают накопление гликогена в печени, предупреждая тем самым истощение энергоресурсов пе-ченочных клеток.

Под влиянием ГК и КХ усиливается мобилизация жиров из жировых де-по, происходит активация липолиза в жировой ткани, что приводит к повы-шению уровня неэтерифицированных жирных кислот в плазме. Это позволя-ет некоторым органам и тканям начать их использование в качестве энерге-тического субстрата. При стрессе возрастает β-окисление жирных кислот в миокарде, скелетных мыщцах, почках, нервной ткани.

Смотрите так же:  Насморк и начало беременности

Таким образом, в кровь выбрасываются значительное количество глюко-зы, жирных кислот, основных источников энергии, столь необходи-мых в данный момент для обеспечения возросших функций организма по ликвида-ции последствий действия стрессорного фактора.

2. Мобилизация и направленное перераспределение белкового резерва организма. В тканях, не участвующих в адаптации, особенно в лимфоидной, мышечной, соединительной и костной, наблюдается угнетение синтеза бел-ков, частичный лизис клеток. В печени, ЦНС и сердце ограничения синтеза белка не происходит. Освобожденные в реакциях катаболизма аминокислоты направляются главным образом к печени, где они используются в реакциях глюконеогенеза, а также для синтеза ферментных белков. Благодаря регуля-ции активности и синтезу ферментных белков ГК принимают участие в ши-роком спектре метаболических процессов. Кроме того, часть аминокислот идет на синтез структурных белков в клетках органов и тканей, ответствен-ных за адаптацию к действию стрессора. Это приводит к формированию в них структурных изменений (например, гипертрофии сердечной, скелетной мышц при физической нагрузке), которые существенно повышают мощность реагирующих систем.

3. Избирательное распределение циркулирующей крови. За счет сужения сосудов органов, не участвующих в адаптации (например, органов брюшной полости и неактивно работающих мышц), кровь направляется к органам, причастным к адаптации.

4. Обогащение крови кислородом и увеличение притока кислорода к тка-ням за счет усиления вентиляции легких и увеличения минутного объема сердца.

5. Активация внутриклеточных процессов путем умеренного увеличения содержания в цитоплазме клеток кальция — универсального стимулятора функции клеток, а также путем активации регуляторных ферментов – проте-инкиназ. Это осуществляется благодаря повышению в крови паратгормона, под влиянием которого происходят выход кальция из костной ткани и увели-чение его в крови, а также активация механизмов вхождения кальция в клет-ку, которая обеспечивается возросшим уровнем КХ, ГК, вазопрессина.

6. Потенцирование действия КХ. ГК, усиливают влияние катехоламинови тем самым повышают эффективность приспособительных реакций, опосре-дуемых ими. Благодаря своему потенцирующему (пермиссивному) действию ГК способны тормозить сосудистые расстройства, оказывать тонизирующее влияние на сосуды, содействовать повышению общего периферического со-противления сосудов и системного кровяного давления, минутного объема сердца, препятствовать развитию острой сосудистой недостаточности.

7. Повышение стабильности и мощности работы ионных насосов клеток. Под влиянием ГК усиливается синтез ферментов, обеспечивающих транс-мембранное перемещение ионов, повышается активность основных липидза-висимых мембранных белков, рецепторов и каналов ионного транспорта. Эффективный транспорт ионов является исключительно важным фактором высокой работоспособности и устойчивости клеток организма.

8. Стабилизация клеточных и субклеточных мембран всех органов и тка-ней, за исключением лимфоидной. Тем самым под влиянием ГК клетки ста-новятся более устойчивыми к альтерации.

9. Усиление дезинтоксикационной функции печени. ГК усиливают актив-ность ряда печеночных энзимов, в результате чего повышается обезврежи-вающая функция печени.

10. Усиление миграции эозинофилов из кровотока в ткани, где они актив-но выполняют функции фагоцитов, связывают и расщепляют избыток биоло-гически активных веществ, в частности, гистамина. Кроме того, эозинофилы являются источником кининаз, разрушающих избыток кининов.

Однако стресс-реакция – это не только способ достижения резистентно-сти. В ряде случаев возможна трансформация реакции адаптации в реакцию дезадаптации, повреждения, когда стрессорная реакция способствует разви-тию болезней, так называемых «болезней адаптации», по Г.Селье. Болезнь будет той ценой, которой расплачивается организм за борьбу с факторами, вызывающими стресс. Болезни адаптации — это заболевания, возникающие в результате несовершенства механизмов ОАС, его относительной целесооб-разности, это результат или недостаточного стрессового ответа или продол-жительной и выраженной гиперфункции стрессовых механизмов. По мнению Г.Селье, болезнь представляет собой состояние жизни, вышедшее из-за пре-делов адаптации. Заболевание не возникает, если организм располагает хо-рошо развитыми адаптивными механизмами. Условием возникновения забо-левания и серьезного его течения являются, по Г.Селье, «дефицит адаптаци-онной энергии, истощение механизмов защиты»

Переход стрессорной реакции в свою противоположность происходит, если она является чрезмерно сильной, очень продолжительной, часто повто-ряющейся или если адаптивные механизмы организма изначально слабы.

Почему же стресс-синдром, эта защитная по своей сути реакция, приво-дит к истощению адаптационного потенциала? Каковы неблагоприятные факторы стресса?

К числу неблагоприятных факторов стресса следует прежде всего отне-сти необычайно длительное действие высоких доз ГК и КХ. Во время стрес-са концентрация КХ в крови может увеличиться в 20-50 раз и более. С их действием в значительной степени связывают возникновение язвенных по-ражений желудка при тяжелых стрессах. Язвенные поражения желудка при самых различных стрессорных воздействиях возникают с таким большим по-стоянством, что считаются обязательным признаком стресс-синдрома. Ганс Селье описал триаду изменений, характерную для любого выраженного стресса. В число этих трех основных изменений при стрессе наряду с гипер-трофией коры надпочечников, инволюцией тимиколим-фатического аппарата входит и образование язв в желудочно-кишечном тракте.

Высокие концентрации КХ и ГК, приводят к спазму артериол мышеч-ной оболочки желудка. Спазм сосудов влечет за собой стаз и последующее кровоизлияние в слизистую оболочку или подслизистый слой. В итоге ише-мического повреждения слизистой и кровоизлияний в ней развиваются оча-говые некрозы с последующим изъязвлением. Изъязвлению способствуют усиление кислотно-пептического фактора и ослабление продукции защитной слизи под влиянием ГК.

С действием высоких концентраций КХ связывают также развитие стрессорных повреждений миокарда. Большие дозы норадреналина вызы-вают увеличение вхождения в миокардиальные клетки ионов Са2+, избыток которых в сочетании с избытком свободных жирных кислот из-за активации катехоламинозависимого липолиза приводит к набуханию митохондрий, к разобщению окислительного фосфорилирования и дефициту АТФ и креа-тинфосфата в миокардиальных клетках. Одновременно кальциевая перегруз-ка вызывает контрактурные сокращения миофибрилл, так как при этом на-рушается фаза диастолического расслабления. Эта энергодефицитная ситуа-ция и контрактура в итоге приводят к мелкоочаговым некробиотическим из-менениям миокарда. Способствует стрессорному повреждению миокарда также стрессорная гипокалиемия.

Кальциевая перегрузка, возникающая при чрезмерно сильной или за¬тянувшейся стресс-реакции, оказывает токсический эффект не только по от-ношению к кардиомиоцитам, а является универсальным механизмом повре-ждения клеток. Таким образом, одним из неблагоприятных стрессорных фак-торов может стать кальциевая перегрузка клеток.

С действием высоких концентраций катехоламинов связывают также чрезмерную интенсификацию перекисного (свободнорадикального) окисле-ния липидов (ПОЛ). Под влиянием продуктов ПОЛ – гидроперекисей липи-дов – происходят образование свободных радикалов, лабилизация лизосом, освобождение протеолитических ферментов, и в конечном результате появ-ляются высокотоксичные продукты – альдегиды, кетоны, спирты, накопле-ние которых вызывает повреждение мембраносвязанных ферментов, нару-шение мембранного транспорта и гибель клеток. Есть все основания утвер-ждать, что при стрессе активация ПОЛ является универсальным механизмом гибели клеток и выполняет роль ключевого патогенетического звена в по-вреждении различных органов и тканей. Существенная роль ПОЛ в патогене-зе стрессорных повреждений подтверждается положительным эффектом ан-тиоксидантных препаратов на функцию и структуру клеток. Особенно за-щитный эффект антиоксидантов отмечен при стрессорном повреждении кар-диомиоцитов (Петрович Ю.А., Гуткин Д.В., 1986; Барабой В.А. и др., 1992)

Длительная гиперлипидемия является еще одним из неблагоприятных факторов стресса. При стрессе повышена мобилизация жира из жирового де-по. Активация липолиза ведет к образованию свободных жирных кислот — донаторов энергии для интенсивно функционирующих органов. Однако ис-пользование жирных кислот сопряжено с повышением потребления кислоро-да. При его дефиците в условиях действия стрессор-ного фактора, утилиза-ция свободных жирных кислот нарушается, происходит их накопление, ини-циирующее ряд патологических процессов: жировое перерождение печени, повышение свертываемости крови и тромбоз сосудов, развитие атеросклеро-за, гипертонической болезни. Кроме того, стресс-реакция характеризуется активацией фосфолипаз, что сопровождается перераспределением фосфоли-пидов, образованием лизофосфолипидов, обладающих детергентными свой-ствами. В результате этого меняются структурная организация, фосфолипид-ный и жирно-кислотный состав липидного слоя мембран, изменяется липид-ное окружение мембраносвязанных белков, выполняющих роль ферментов, рецепторов. Такие изменения умеренной степени увеличивают активность этих белков. Однако при чрезмерно длительной и интенсивной стресс-реакции избыточная активация фосфолипаз приводит к повреждению кле-точных мембран, к инактивации мембраносвязанных рецепторов клеток, ионных каналов и насосов.

Длительная гиперпродукция ГК может сопровождаться выраженной ат-рофией лимфоидной ткани. Поскольку лимфоидная ткань является основой иммунной системы, то результатом ее атрофии должны быть недостаточ-ность иммунных механизмов защиты, снижение эффективности иммунного надзора, что облегчает злокачественную трансформацию клеток.

Еще одним результатом чрезмерной продукции ГК является подавление воспалительной реакции. Как известно, воспаление – это своебразный барь-ер, препятствующий дальнейшему распространению инфекционного агента за пределы зоны внедрения. ГК, обладающие противовоспалительным эф-фектом, подавляя воспаление, тем самым угнетают этот барьер и способст-вуют распространению инфекции. В клинике давно уже замечено, что дли-тельные стрессы предрасполагают к обострению хронических инфекционных заболеваний или способствуют возникновению новых инфекций.

Стресс-реакция характеризуется также активацией протеолитических систем, что приводит к денатурации белковых структур. При стрессе, в отли-чие от воспаления, не наблюдается достаточного увеличения содержания ингибиторов протеолиза, каковыми, например, при воспалении являются белки острой фазы.

Таким образом, стресс-реакция при определенных условиях может пре-вратиться из звена адаптации организма к различным факторам в звено пато-генеза различных заболеваний. В настоящее время показана роль стресса как главного этиологического фактора язвенных поражений слизистой желудка и 12-перстной кишки, ишемической болезни сердца, гипертонической болезни, атеросклероза. Стресс, особенно хронический, способствует также развитию иммунодефицитных состояний, аутоиммунных заболеваний, неврозов, импо-тенции, бесплодия, онкологических заболеваний и др. (Горизонтов П.Д., 1981; Фурдуй Ф.И., 1981; Евсеев В.А, Магаева С.В., 1985; Крыжановский Г.Н.,1985; 1985)

После всего изложенного будут правомочными следующие вопросы: «Что же такое стресс? Стресс – это хорошо или плохо? Является ли стресс физиологическим или патологическим явлением? Стресс все же биоло-гический феномен защиты, направленный на повышение устойчивости орга-низма к действию раздражителей, хотя и включает в себя элементы повреж-дения. Жизнь невозможна без стрессов. Г.Селье писал, что полная свобода от стресса означает смерть. Стресс – это не неблагоприятные жизненные об-стоятельства, а защитная реакция на эти обстоятельства, при этом стресс мо-жет не причинить никакого вреда организму. Стресс не обязательно и не в каждом случае приводит к патологическим явлениям. Сам Г.Селье предло-жил различать 2 типа стресса – эустресс и дистресс (англ.distress – истоще-ние, несчастье). Эустресс – это физиологический стресс, адаптационный, он мобилизует и тренирует защитные ресурсы организма, не причиняя ему вре-да. Дистресс – это патологический, вредоносный или неприятный стресс, приводящий к развитию патологии. Именно дистресс служит патогенетиче-ской основой развития болезней – болезней адаптации, по Г.Селье (Г.Селье, 1979)

Человек располагает рядом механизмов, препятствующих чрезмерной активации стресс-системы и соответственно реализации повреждающих эф-фектов избыточных концентраций стресс-гормонов. Это так называемые стресс-лимитирующие механизмы (Меерсон Ф.З., 1986) Интенсивность стресс-реакции как раз и определяется соотношением степени стимуляции стресс-реализующих механизмов при действии стрессора на организм и ак-тивации стресс-лимитирующих факторов.

Смотрите так же:  Гепатит и свертываемость крови

Стресс-лимитирующие системы могут быть подразделены на централь-ные, главная задача которых состоит в ограничениии активации центральных звеньев стресс-системы, и периферические, действие которых направлено на повышение устойчивости клеточных структур и органов к повреждениям.

Ограничение активности стресс-реализующих механизмов прежде всего достигается за счет усиления выделения центральных тормозных медиато-ров, таких как дофамин, серотонин, глицин, и, особенно, -амино-масляная кислота .(Меерсон Ф. З., 1980). -аминомасляная кислота (ГАМК) – это глав-ный тормозной медиатор в центральной нервной системе, синтезируется в головном мозге путем декарбоксилирования глутамата (цикл Робертса). КХ, накапливаясь в избыточной концентрации, блокируют естественные пути ме-таболизма -кетоглютаровой и янтарной кислот в цикле Кребса, что приво-дит к активации альтернативного пути их использования. В результате резко усиливается образование ГАМКа. Антистрессорный эффект ГАМК-эргической системы реализуется на уровне высших вегетативных центров головного мозга и состоит в предупреждении чрезмерного выброса кортико-либерина и катехоламинов. Тормозное действие ГАМК на катехоламиновое звено стресс-системы осуществляется не только в ЦНС, но и на периферии, ограничивая высвобождение КХ из симпатических нейронов, иннервирую-щих органы и ткани.

Один из метаболитов ГАМК-эргической системы – -оксимасляная ки-слота, который, в отличие от ГАМКа, хорошо проникает через гемато-энцефалический барьер при введении в организм извне, уже используется для профилактики стрессорных повреждений самых различных органов, в частности для предупреждения дальнейших повреждений сердечной мышцы при инфаркте миокарда.

Другим центральным стресс-лимитирующим фактором является опиои-дергическая система. (Игнатов Ю.Д.,1982; Лиманский Ю.П., 1983; Пшенни-кова М.Г.,1987) При стрессе имеет место усиление синтеза и освобождения эндогенных опиоидных нейропептидов, которые в настоящее время делятся на три группы: проэнкефалиновая, представленная главным образом лей- и метэнкефалинами, пропиомеланокортиновая, наибольшее физиологическое значение из этой группы имеет -эндорфин, и продинорфиновая, куда входят динорфин А, динорфин В, или лейморфин, а также -и -неоэндорфины. Эти нейропептиды обладают выраженным седативным действием, повышают по-рог чувствительности для болевых раздражителей, обладают способностью подавлять продукцию гипофизарных стресссорных гормонов, ограничивают чрезмерную активность симпатико-адреналовой системы, предупреждая тем самым опосредованные катехоламинами повреждения в организме. Ограни-чение эффектов симпатической системы осуществляется также путем угне-тения через опиатные рецепторы процесса высвобождения норадреналина из симпатических нервных окончаний. Этот результат достигается за счет инги-бирования опиатами аденилатциклазы и уменьшения по этой причине транспорта Са2+ в пресинаптические мембраны. Анальгетическое действие опиоидных пептидов в значительной мере реализуется за счет способности последних повышать активность серотонинергической системы. Одним из последствий активации серотонинергической системы является блокада на уровне спинного мозга проведения ноцицептивных импульсов с первичных афферентов в вышележащие отделы ЦНС.

В последние годы получены данные о том, что NO-система участвует в регуляции стресс-реакции, препятствуя ее чрезмерной активации, оказывая воздействие как на ее центральные, так и на периферические звенья (Малы-шев И.Ю., Манухина Е.Б.,1998) Установлено, что при стрессах, вызванных действием разных факторов, имеет место увеличение синтеза оксида азота, который способен ограничивать выброс гипофизарных стресс-гормонов, блокировать выброс катехоламинов из надпочечников и симпатических нервных окончаний. Кроме того, с участием NO-зависимых механизмов про-исходит реализация некоторых периферических стресс-лимитирующих ме-ханизмов. Оказалось, что оксид азота способен ограничивать повреждения при стресс-реакции путем подавления свободнорадикального окисления за счет повышения активности антиоксидантных ферментов и усиления экс-прессиии кодирующих их генов. Кроме того, оксид азота сам обладает ан-тиоксидантными свойствами. Выяснилось также, что NO активирует синтез цитопротекторных белков теплового шока, или стресс-белков, которые, как известно, являются важной системой защиты клеток от стрессорных повреж-дений. Оксид азота наряду с простагландинами группы Е и простациклином играет важную роль в предупреждении адгезии и агрегации тромбоцитов, что может определять его защитное действие при стрессорной активации тром-бообразования.

К числу периферических стресс-лимитирующих механизмов относятся простагландиновая, антиоксидантная системы и система защитных стресс-белков теплового шока.

Простагландиновая система включает сами простагландины, особенно простагландины группы Е и I2, и их рецепторы. Простагландины относятся к группе – эйкозаноидов, производных арахидоновой кислоты.

Защитное действие ПГЕ при стрессорных воздействиях определяется тремя основными их свойствами: способностью подавлять выброс катехола-минов из симпатических нервных окончаний, оказывать вазодилататорное и прямое цитопротективное действие (Пшенникова М.Г.,1991) Простагланди-ны группы Е и I2, продукция которых увеличивается при активации симпати-ко-адреналовой системы, обладают способностью обеспечивать блокаду вы-деления норадреналина из пресинаптических мембран. В результате этого ограничивается действие КХ на эффекторные клетки, в частности защища-ются сосуды желудка от адренергических спазмов во время стрессорных си-туаций (Fuder H., 1985) В ряде органов и тканей (жировая ткань, желудок) ПГЕ угнетают образование цАМФ при стимуляции -адренорецепторов. Та-ким образом, угнетается катехоламинзависимый липолиз и уменьшается вы-ход в кровь свободных жирных кислот.

ПГЕ и особенно ПГI2, обладают выраженными вазодилататорными свойствами. Наиболее эффективно действие ПГI2 в отношении мелких арте-рий коронарного русла. Синтезируясь в эндотелии этих сосудов, он выступа-ет в роли мощного коронародилататора (Moncada S., Vane J.R.,1979).

ПГI2 являются эффективными антагонистами тромбоксана А2 — мощно-го индуктора агрегации тромбоцитов и вазоконстриктора, а также лейкот-риенов, оказывающих сильное сосудосуживающее действие (Lefer A.M.,1986).

В основе цитопротективного действия ПГ лежит их прямое стабилизи-рующее влияние на клеточные мембраны. ПГ могут подавлять ПОЛ и тем самым предупреждать повреждающее действие продуктов перекисного окис-ления липидов на мембраны клеток.

Еще одним из механизмов ограничения стресс-индуцированных по-вреждений является активация синтеза высокоактивных защитных стресс-белков теплового шока, которые помогают клетке пережить стресссовые си-туации. Они участвуют в восстановлении, «ремонте» белков, поврежденных, приобретших неправильную конформацию в результате неблагоприятных воздействий. Название этих специфических белков не совсем точное. Свое название они получили, поскольку впервые были обнаружены в клетках, подвергавшихся тепловому воздействию, превышающую температуру, опти-мальную для клетки. Белки теплового шока – эта система, состоящая из 4 групп различных по молекулярной массе и функциям регуляторных белков. Но общим для всех них является то, что их синтез резко увеличивается в от-вет на разнообразные повреждения клеток и что они повышают устойчивость клетки к повреждению, ограничивают протеолиз, стабилизируют сигнальные рецепторы, способствуют работе репаразной системы, индуцируя програм-мы, устраняющие повреждения в клетке или сами поврежденные клетки. В условиях стресса белки теплового шока, взаимодействуя с рецепторами сте-роидных гормонов, могут блокировать избыточное воздействие этих гормо-нов на клетки.

Не менее важным фактором естественной профилактики стрессор-ных повреждений является антиоксидантная система, непосредственно защи-щающая клеточные мембраны от повреждающего действия свободных ради-калов. Главными элементами защиты организма от действия токсических факторов метаболизма кислорода являются антиоксидантные ферменты – супероксиддисмутаза, каталаза, глютатионпероксидаза, расщепляющие глав-ные активные формы кислорода.

В защите от активных форм кислорода в организме участвуют и другие факторы. Это прежде всего неферментные антиоксиданты — -токоферол, витамины группы А, С, К, Р, которые активны почти ко всем свободным ра-дикалам.

Из других агентов антиоксидантной активностью обладают стероидные гормоны, билирубин, церулоплазмин (влияя на свободное железо крови), трансферрин, альбумины, SH-группы белков.

Стимуляция антиоксидантных механизмов защиты организма способ-ствует ограничению свободнорадикального окисления при стрессе.

Таким образом, развитие общего адаптационного синдрома и его ис-ход зависят от степени выраженноости стресс-реализующих и стресс-лимитирующих систем и характера их взаимодействия. Экспериментальные и клинические исследования показали, что применение ГОМК, синтетиче-ских опиатов, серотонина, -токоферола, антиоксидантов, производных бен-зодиазепина (фенозепам), которые потенцируют эффекты ГАМК-системы на всех уровнях ЦНС, способны снижать повреждающее действие стресс-реакции при врожденной или приобретенной неполноценности стресс-лимитирующих факторов.

333. Барабой В.А., Брехман И.И., Голотин В.Г., Кудряшов Ю.Б. Перекис-ное окисление и стресс. СПб.,1992.

334. Горизонтов П.Д. //Вестн. АМН СССР — 1979.- N 11.- С.12-18.

335. Горизонтов П.Д. Стресс //Гомеостаз.- М.,1981.- С.538-570.

336. Гущин И.С. //Вест. АМН СССР — 1985.-N 8.- С.63-65.

337. Евсеев В.А., Магаева С.В. //Вестн. АМН СССР — 1985.-N 8. — С.18

338. Игнатов Ю.Д. /Фармакология нейропептидов. — М.,1982.- С. 742

339. Зайчик А.Ш., Чурилов А.П. Общая патофизиология. Т.1.– СПб., 2001.

340. Крыжановский Г.Н. //Вестн. АМН СССР. — 1985.-N 8.- С. 3-12.

341. Лейкок Дж.Ф., Вайс П.Г. Основы эндокринологии. — М., 2000.

342. Лиманский Ю.П. //Фармакологические аспекты обезболивания.-Л.,1983.-С. 22-28.

343. Малышев И.Ю., Манухина Е.Б. //Биохимия,- 1998.- Т. 63, вып. 7.- С.992-1006.

344. Меерсон Ф.З. //Патол. физиол, и эксперим. терапия. – 1980.- N 5.- С.3-16.

345. Меерсон Ф.З //Физиология адаптационных процессов. -М.,1986.- С.521-631.

346. Механизмы развития стресса /Под общей ред.Ф.И. Фурудуй- Киши-нев, 1987.

347. Петрович Ю.А., Гуткин Д.В. //Патол. физиол. и эксперим. терапия. 1986,- N 5.-С.85-92.

348. Пшенниекова М.Г. //Патол. физиол. и эксперим. терапия. – 1987.- N 3.-С.85-90.

349. Пшенникова М.Г. //Патол. физиол. и эксперим. терапия. – 1991.- N 6.-С.54-58.

350. Пшенникова М.Г. //Патол. физиол. и эксперим. терапия. – 1991.- N 6.- С.54-58.

351. Селье Г. Очерки об адаптационном синдроме. — М., 1960 .

352. Селье Г. Стресс без дистресса. — М., 1979.

353. Судаков К.В. //Патол. физиол. и эксперим. терапия. – 1992. – N 4.- С.86-93.

354. Тигранян Р.А., Вакулина О.П.//Космическая биол.-1984.-N 6.- С 83

355. Тигранян Р.А. Стресс и его значение для организма. — М., 1988.

356. Толянина В.Г. //Физиол.журнал. -1997.- N 4.- С.9-14.

357. Fuder H. //J. cardiovascul. Pharmacol.-1985/-Vol.7, -N 5-P.52-57.

358. Moncada S., Vane J.R. //Pharmacol. Rew.-1979-Vol 30.- P.293-331.

359. Lefer A.M. //Biocheem. Pharmacol.-1986.-Vol.35.- P.123-127.

29-30 ноября 2018г. прошли научные мероприятия РАЕ: Международная научная конференция «Наука и образование в современной России», Международная научная конференция «Инновационные медицинские технологии», Научно-практическая конференция «Международные системы аттестации научно-педагогических кадров», XXXIX Международная выставка-презентация учебно-методических изданий.

На универсальную издательскую платформу RAE Editorial System Перенесен журнал из Перечня ВАК «Вестник Алтайской академии экономики и права»

С 10 по 12 октября 2018 г. в Сочи состоялся заключительный очный этап V международного конкурса научно-исследовательских и творческих работ учащихся «СТАРТ В НАУКЕ» и итоговое заседание педагогов высшей и средней школы в рамках научно-практической конференции «Современные проблемы школьного образования».

Приветствие Президенту РАЕ от Национального военного университета им. Васила Левского (Болгария)

С 10 по 13 октября 2018 г. в Сочи состоялись Международные научные конференции: «Перспективы развития вузовской науки», «Фундаментальные и прикладные исследования в медицине», XXV Юбилейная Научно-практическая конференция «Международные системы аттестации научно-педагогических кадров», XXXVIII Международная выставка-презентация учебно-методических изданий, XVII выставка образовательных технологий и услуг, Осенняя сессия РАЕ